
presented at: 8th International Modelica Conference, 20-22.03.2011, Dresden, Germany

Simulation-based development of
automotive control software with Modelica

Emmanuel Chrisofakis1, Andreas Junghanns2, Christian Kehrer3, Anton Rink1

1Daimler AG, 70546 Stuttgart
2QTronic GmbH, Alt-Moabit 91a, 10559 Berlin

3ITI GmbH, Webergasse 1, 01067 Dresden
{emmanuel.chrisofakis, anton.rink}@daimler.com, andreas.junghanns@qtronic.de, kehrer@iti.de

Abstract

We present and discuss the Modelica-based develop-
ment environment currently used by Daimler to de-
velop powertrain control software for passenger cars.
Besides well calibrated vehicle models, the environ-
ment supports automotive standards such as A2L,
MDF, CAN, and XCP to integrate control software
and simulated vehicles on Windows PCs.
Keywords: automotive software development, soft-
ware in the loop

1 Introduction

More and more automotive functions are implemen-
ted using software. Hence, there is an increasing de-
mand to support the corresponding development pro-
cess using virtual, i. e. simulation-based develop-
ment environments.

Figure 1: Vehicle model as used for SiL
Virtually coupling control strategies with plant mod-
els is standard technology today, mostly using com-
mon-place tools such as Matlab/Simulink for pre-

development of control algorithms. This paper
presents technology targeted toward the late stages in
the development process, like tuning, validating and
debugging the entire controller software in closed
loop with simulated plant models. Virtualizing these
later engineering tasks requires plant models with in-
creasingly higher quality (physical effects modeled
and quality of calibration) and near-production con-
troller software (percentage of the controller soft-
ware included, parameterization using production
parameter sets and adaptation of the software to the
plant) to be coupled.
A tool-chain supporting such coupling should

• be easy to set up and use by automotive de-
velopers who are usually not computer sci-
entists

• support many of the engineering tasks usu-
ally performed with physical prototypes to
allow for front-loading

• support short turn-around times, i. e. minim-
ize the time between editing of control soft-
ware and validation of the resulting behavior
on system level to help find problems early

• provide built-in support for standards and
de-facto standards used in automotive soft-
ware development to allow cost-effective
use of existing information sources

• support distributed development and ex-
change of work products between OEMs,
suppliers, and engineering service providers.
This requires e. g. measures to protect intel-
lectual property.

• support reconfiguration of the development
tool chain, since automotive development
tools are frequently updated or replaced, e. g.
due to emerging standards, new bus proto-
cols or tool policy considerations.

In this paper, we present the simulation-based devel-
opment environment used by Daimler to develop the
powertrain control software for Mercedes passenger
cars. The tool chain presented here addresses the

above demands. It is based on vehicle models imple-
mented using Modelica and processed using Simula-
tionX as a tool for the design and analysis of com-
plex systems, the FMU standard for model exchange,
MATLAB/Simulink and TargetLink as a tool for
model based development of automotive controllers
and Silver as a tool for virtual integration of control
software, application data and the simulated vehicle.

The paper is structured as follows: In the next sec-
tion, we describe why and how Modelica is used
here to create vehicle models. Section 3 describes
how such a vehicle model is then coupled with con-
trol software and what else is needed to get automot-
ive control software running in closed loop on a PC.
Section 4 describes how such a SiL setup is used to
support automotive software development, and sec-
tion 5 describes costs and benefits of setting up a
SiL.

2 Vehicle models

Daimler started around 2004 to use Modelica for
building vehicle models used for test and develop-
ment of powertrain control software via software in
the loop (SiL). For example, the members of the 7G-
Tronic transmission family have been developed this
way [1]. Ongoing projects developed within this
Modelica-based framework include dual-clutch
transmissions by Mercedes [2] and AMG [3], and
hybrid drivetrains. Basic requirement of a plant mod-
el in a SiL-environment for automatic gearboxes is
the accurate calculation of the gear shifting. In order
to achieve this goal, detailed model representation of
gearbox kinematics, clutch mechanics and hydraulic
control is essential. Therefore special Modelica lib-
raries have been developed over the years to support
transmission development.
For the development of customer specific libraries
SimulationX offers a wealth of options such as the
dedicated TypeDesigner that simplifies graphical and
textual modeling compared to traditional forms.
Based on these libraries, a well calibrated vehicle
model for a new transmission project can be setup
within just a few weeks. This short development is
partly credited to good properties of the Modelica
language, which provides outstanding support for the
reuse of component models, mainly by providing
powerful means to parametrize models and built-in
support for acausal modeling. Latter feature offers
the model developer great possibilities to calibrate
and validate his model by using measurements either
from car or from test rig since no model modifica-

tions are necessary if the measured signal is a flow or
potential quantity (e. g. torque as opposed to speed).

Figure 2: Gearset of a 7G-Tronic Transmission

Different capabilities for implementing measured
data in SimulationX and validating the Modelica
models against these data without the necessity of
using another tool in combination with further op-
tions like the VariantsWizard help to increase the ef-
fiency of model calibration. With special regard to
the needs of powertrain modeling ITI provides dif-
ferent analyzing methods, e. g. the linear system ana-
lysis or the steady state simulation.

Figure 3: Transmission hydraulics

Figures 1, 2 and 3 show typical Modelica models
used in series development projects.

Daimler uses Dymola and also SimulationX [4] to
edit and process Modelica models. Since Modelica
version 3.1 there is full compatibility of the plant
models both in Dymola 7.4 as well as in Simula-

tionX 3.4. Models and libraries are stored on hard
disk as .mo files. Both tools are able to read these
files with no specific modification, i. e. they use ex-
actly the same files for displaying exactly the same
structure. Figure 4 shows a screenshot of the direct-
ory structure and the integration in every tool.
This proves that one design goal of Modelica and the
Modelica Standard Library (MSL) has been reached
now, namely to provide a tool-vendor independent
representation format for simulation models. There
are however still a few issues to be solved to fully
reach vendor independence of the MSL:

• The definition of tables in Modelica Stand-
ard Library is based on external functions.
The implementation of these functions is not
part of the library itself and has to be done
by tool vendors. In consequence of missing
specification the different implementations
are not completely compatible.

• With the exclusive usage of external func-
tions it is difficult to adapt the implementa-
tion on the requirements of the underlying
tool. The substitution of external functions
by external objects would improve the im-
plementation capabilities.

• For users of a Modelica tool it is difficult to
decide whether a used construct is compat-
ible to Modelica language specification or
not (e. g. classDirectory function). All tool
dependent extensions of Modelica language
should be marked as vendor specific similar
to existing vendor specific annotations.

• Modelica libraries often use different version
of annotations for graphical objects or attrib-
utes which are invalid in the particular con-
text (e.g. fillColor for lines). While several
tools ignore such annotations other programs
generate error messages, which can be a
little bit confusing for users and developers.
For that reason a stronger validation of an-
notations would be preferable.

To create a Software in the Loop setup, the Modelica
model is then exported. In previous years, the C code
generated by either Dymola or SimulationX from a
given Modelica model has been wrapped and com-
piled for execution by one of the SiL tools described
in Section 3. For export, special wrapper code had to
be developed for each simulation tool, and even for
each version of such a tool, which was time consum-
ing and error prone. Daimler started recently to use
the FMI [8] developed within the Modelisar project
as an export format for Modelica models. This stand-
ard is supported by the latest versions of Simula-
tionX, Dymola, and Silver. This removes the need to
maintain version and vendor specific wrapper code,
which further improves and speeds up the SiL-based
development process.

3 Getting automotive control soft-
ware into the loop

Daimler uses Silver [5] and its in-house predecessor
Backbone to virtually integrate vehicle models and
control software on Windows PCs. Tools such as Sil-
ver or Backbone are mainly needed to support vari

Figure 4: Modelica library Car in SimulationX and Dymola

ous standards and quasi-standards used for automot-
ive software development. Developers are familiar
with these standards and know how to use them.
Data is available in these formats already as part of
the existing tool chain and reuse is virtually free of
cost. Furthermore, using these data sources in the
virtual development process allows early validation
of these data sources. A virtual development envir-
onment should therefore mimic, emulate, or else how
support these standards. A few examples of how the
SiL tool supports automotive standards is shown in
Fig. 5.
Developers typically use tools such as CANape
(Vector) or INCA (ETAS) to measure signals and
calibrate (fine-tune) parameters of the control soft-
ware in the running car or on a test rig using standard
protocols such as CCP or XCP. The SiL environment
implements this protocol. Seen from a measurement
tool such as CANape, a SiL simulation behaves just
like a real car. Developers can therefore attach his fa-
vorite measurement tool to the SiL to measure and
calibrate using the same measurement masks, data
sources and procedures they are using in a real car.
Likewise, automotive developers use MDF files to
store measurements. The SiL can load and save this
file format. A measured MDF file can e. g. be used
to drive a SiL simulation.
Another example is A2L. This is a database format
used to store key information about variables and
(tunable) parameters of automotive control software.
A2L contains e. g. the address of variables in the

ECU, its physical unit, comment and scaling inform-
ation that tells how to convert the raw integer value
to a physical value. The SiL-environment reads A2L
files and uses the information to automate many
tasks, such as scaling of the integer variables of the
control software to match the physical variables of
the vehicle model.
The SiL-environment also knows how to read DBC
files. These describe how the control software com-
municates with other controllers using the CAN pro-
tocol. The SiL-environment uses this e. g. to imple-
ment rapid prototyping: Load the control software
and the DBC into the SiL tool on your laptop, con-
nect the laptop to car using a CAN card, and switch
the ECU to 'remote control' mode. The control soft-
ware running in the SiL tool controls then the corres-
ponding system of the real car, e.g. an automatic
transmission. The main advantage of such a setup is,
that it saves time. Getting the control software run-
ning in a real ECU is typically much more time con-
suming than using a SiL tool or any other tool for
rapid prototyping.
Finally, the SiL tool can process PAR and HEX files.
These files may contain calibration data, i. e. values
for all the tunable parameters of the control software.
The SiL tool knows how to load these values into the
control software running in the SiL, emulating
thereby the 'flash' process of the real ECU. In effect,
the SiL tool is actually not only running the control
software, but the fine-tuned version of the software,
which enables much more detailed investigation and
testing of the control software's performance.

Figure 5: SiL environment an its interfaces to automotive standards

Having all these standards available in the SiL eases
the task of actually getting automotive control soft-
ware running on a PC, and doing useful things with
the resulting setup. Control software is typically de-
composed into a number of so-called tasks (i. e.
functions implemented in C) that are run by an
RTOS (real-time operating system) such as OSEK.
Many tasks are periodically executed with a fixed
rate, e. g. every 10 ms. To get such tasks running in
SiL, the user has to build an adapter as shown in
Fig. 5, i. e. a little C program that implements the
Silver module API and emulates the RTOS by call-
ing each task once at every (or every 2nd, 3rd, ...)
SiL macro step. The SiL tool is shipped with the
SBS (Silver Basis Software), i. e. C sources that
make it easy to build such an adapter by adapting
template adapter code. A cheap alternative to writing
an adapter is to use the SiL tool's support for MAT-
LAB/Simulink and Realtime Workshop (RTW).
Automotive software is often developed by first cre-
ating a model of the controller using Simulink. The
model is then used to automatically generate fix-
point integer code, e. g. using tools like the Embed-
ded Coder from MathWorks, TargetLink from
dSPACE, or Ascet from ETAS (model-based devel-
opment). The SiL tool contains support for exporting
a Simulink model using RTW. The result will not
use fix-point integer but floating point arithmetic, so
it is Model-in-the-loop (MiL), as opposed to Soft-
ware-in-the-loop (SiL). This is a fast push button
solution for exporting a controller model to SiL,
which does not require any hand coding, and is
therefore attractive.

Figure 6: Software in the Loop (SiL) setup of
transmission control software and vehicle model

4 Using the system model during
automotive development

So far we have mainly described what is needed to
get automotive control software running on a Win-
dows PC, in a closed loop with the simulated
vehicle. This section describes how such a SiL setup
can then be used to support the development process.
Supported activities include

• Virtual integration: Automotive control soft-
ware for a single ECU typically consists of
dozens of software modules, developed inde-
pendently by a team of developers. Having a
SiL helps to detect problems in the interplay
of these modules early, long before an at-
tempt is made to run all the module in a real
car. For example, before releasing a new
version of his module, a developer can
quickly check on his PC whether the module
works together with the modules of other de-
velopers. To do this, he only needs access to
compiled modules (object files), not to the
sources of other modules [2]. An additional
benefit here is the isolation of developers
from the changes of others when validating
their modifications early on as his changes
are only local to his own sources. Later in-
tegration efforts build on modifications
already validated, albeit in isolation.

• Debugging: In contrast to the situation in a
real car or on a HiL test rig, simulation can
be halted in SiL. It is then possible to inspect
all variables, or to change certain values to
simulate a fault event. In conjunction with a
debugger (such as Microsoft Visual Studio),
it is even possible to set breakpoints or to
single-step through the controller code,
while staying in closed loop with the simu-
lated car. The SiL tool can also be used to
debug problems measured in a real car, if a
measurement file (MDF) is available. In this
case, simulation is driven by the measure-
ment, and the SiL complements this meas-
urement by computing the missing signals to
provide a full picture needed to debug the
problem.

• Fault simulation: Using a SiL, it is possible
to create and explore scenarios that would be
difficult or impossible to realize in a real car
or on a test rig. For example, you can simu-
late strong wind [7] or inject arbitrary com-
ponent faults into the simulation.

• Comparing versions: The SiL tool offers a
function to compare the behavior of different

software versions by comparing all signals
computed by these versions. This is e. g.
useful when checking for equivalence after
refactoring or clean up of modules.

• Scripting: A SiL simulation can be driven by
a script, written e. g. in Python. This can be
used to implement optimization procedures,
for performing tests, or to trigger self-learn-
ing algorithms that adapt the control soft-
ware to certain properties of the (simulated)
car, e. g. to compensate aging of compon-
ents.

• Systematic testing: In conjunction with the
test case generator TestWeaver, the SiL tool
allows the systematic testing of control soft-
ware. TestWeaver generates thousands of
test cases which are then executed by the SiL
tool.

• Virtual endurance testing: calculation of
load collectives for gearbox and drivetrain,
e. g. to develop and test measures for safe-
guarding of the drivetrain components.

• Application/Calibration: of the control soft-
ware on the PC.

Figure 7: A debugger attached to Silver
A typical use case of the SiL tool is shown in Fig. 7.
The test case generator TestWeaver [8] has found a
scenario where the control software of a transmission
performs a division by zero. This is clearly a bug.
The user replays the recorded scenario, with Mi-
crosoft Visual Studio attached to the SiL tool. When
the division by zero occurs, the debugger pops up as
shown in the figure, showing the line in the control-
ler source code that causes the exception.

5 Costs and benefits

Main cost factors of using the simulation-based tool
chain for automotive software development are

• development and maintenance of the simula-
tion model: Here is where modern modeling
languages and tools such as Modelica and
SimulationX help reduce costs by reuse of
components and easy parameterization

• continuous calibration efforts to keep such a
model up to date with the plant simulated:
SimulationX allows continuous enhance-
ments based on existing models and libraries
by replacing components and models of
varying complexity throughout all develop-
ment phases. Reusing models including all
interfaces necessary for calibration in com-
bination with a wide range of tool options,
e. g. VariantsWizard, COM-scripting or op-
timization tools, leads to an increasing effi-
ciency in the workflow.

• Building the adapter code for the controller
software: With the introduction of the Silver
Basic Software package, this effort is signi-
ficantly reduced.

Despite continuing cost-reduction efforts, these in-
vestments are still significant.
They are compensated by the benefits of such a Soft-
ware in the Loop setup for developing control soft-
ware, namely

• extremely fast development cycles: due to
comfortable integration of software and
vehicle components on the PC of the de-
veloper. This helps to detect problems early.

• excellent debugging and test support, e. g.
with Microsoft Visual Studio Debugger or
QTronic TestWeaver [1,2,3,6]. Found prob-
lems can be exactly reproduced as often as
needed.

• parallelize the development process: A SiL
configuration can easily be duplicated at low
cost. This way, every member of a team can
use its personal 'virtual' development envir-
onment 24 hours a day, without blocking
rare resources like HiL test rigs, or physical
prototypes.

• sharing results without sharing IP: All mem-
bers of a team exchange working results by
exchanging compiled modules (DLLs), not
sources. This helps to protect intellectual
property.

• executing others contributions without their
tools: Our SiL runs modules (simulation
models, control software) developed using

very different tools without accessing these
tools. This greatly reduces the complexity of
the SiL setups (no tool coupling).

6 Conclusion

We presented the tool chain used by Daimler for
simulation-based development of transmission con-
trol software. The environment is based on Model-
ica, provides build-in support for automotive stand-
ards, imports vehicle models via the standard FMI
and uses these models to perform closed-loop simu-
lation of automotive control software. The virtual de-
velopment environment created this way helps to
shorten development cycles, eases test and debug-
ging, helps to parallelize and hence to speed up de-
velopment and provides a convenient platform for
collaboration between Daimler's transmission devel-
opment departments and its suppliers and engineer-
ing service providers.

Acknowledgments
Our work on the FMI [8] presented here has been
funded by the Federal Ministry for Education and
Science (BMBF) within the ITEA2 project MODEL-
ISAR (Förderkennzeichen 01IS08002).

References

[1] A. Rink, E. Chrisofakis, M. Tatar: Automating
Test of Control Software - Method for Auto-
matic TestGeneration. ATZelektronik 6/2009
Volume 4, pp. 24-27.

[2] H. Brückmann, J. Strenkert, U. Keller, B. Wies-
ner, A. Junghanns: Model-based Development
of a Dual-Clutch Transmission using Rapid
Prototyping and SiL. International VDI Con-
gress Transmissions in Vehicles 2009,
Friedrichshafen, Germany, 30.06.-01-07.2009

[3] M. Hart, R. Schaich, T. Breitinger, M. Tatar:
Automated test of the AMG Speedshift DCT
control software 9th International CTI Sym-
posium Innovative Automotive Transmissions,
Berlin, 30.11. - 01.12.2010, Berlin, Germany.

[4] SimulationX, http://www.simulationx.com/
[5] Silver, http://qtronic.de/en/silver.html
[6] A. Junghanns, J. Mauss, M. Tatar: TestWeaver

- A Tool for Simulation-based Test of Mechat-
ronic Designs. 6th International Modelica Con-
ference, Bielefeld, March 3 - 4, 2008, pp. 341 -
348, 2008.

[7] Hilf, Matheis, Mauss, Rauh: Automated Simu-
lation of Scenarios to Guide the Development
of a Crosswind Stabilization Function. 6th
IFAC Symposium on Advances in Automotive
Control, Munich, Germany, July 12 - 14, 2010.

[8] FMI Specification 1.0, available for free from
http://www.functional-mockup-interface.org/

	1 Introduction
	2 Vehicle models
	3 Getting automotive control software into the loop
	4 Using the system model during automotive development
	5 Costs and benefits
	6 Conclusion

